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The mean spherical approximation for the internal energy U of the classical 
one-component plasma is solved exactly in the limit r >> 1, where F is the 
usual Coulomb coupling parameter. The result ~ U / N = - ~ F  + 
l/6x/~rl/2 + 171/6/15x/3 21/3+ O (r  -I/6) is consistent with DeWitt's empirical 
analysis of the mean spherical approximation. 

KEY W O R D S  : Mean spherical approximation ; classical one-component 
plasma ; strong coupling. 

1. I N T R O D U C T I O N  

D e W i t t  ~1) has found  tha t  the equi l ibr ium t h e r m o d y n a m i c  proper t ies  of  the 
classical one -componen t  p l a sma  2 (OCP)  satisfy s imple funct ional  forms in 
the " d e n s e "  fluid state. The ma in  result  o f  his least squares analysis  o f  the 
M o n t e  Car lo  (MC)  calcula t ions  o f  Hansen  (2) is tha t  the fluid poten t ia l  energy 

U can be fi t ted accura te ly  by  the empir ica l  form (1~ 

[3U/N = -0 .89461I"  + 0.8165I '~/~ - 0.5012, P > 1 (1) 

where  the d imensionless  pa r ame te r  F is defined by 3 

P = fle2/a (2) 

with a = (3/4rm) l/a. The form (1) fails in the weak coupl ing l imit  P << 1, for  
which the leading con t r ibu t ion  to ~ U / N  is O(I'a/2), and  at  the f lu id- la t t ice  
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transition, which is estimated (3,4~ to be in the range F ~ 144-158. DeWitt's 
interpretation of (1) is that it represents the asymptotic form of the internal 
energy for the strongly coupled or dense OCP in the fluid state. The main 
characteristics of (1) are the separation of U/N into a dominant static energy 
portion, -cw2/2a, which is identical in form to the lattice energy at T = 0, 
and a thermal energy portion which varies as T a/4. The constant ~ is 0.15~ 
higher than the bcc lattice sum. The form (1) implies that a strongly coupled 
OCP may be described as a disordered lattice and that the essential difference 
between the fluid and s61id states is that the leading T dependence of U/N is 
T 3/4 rather than 7'. 

Theoretical calculations of the equilibrium static properties of the OCP 
have been mainly limited to numerical solutions of integral equations for the 
pair distribution function g(r). Ng (5) has solved the hypernetted chain 
(HNC) equation for 20 ~< P ~< 7000 and has obtained very accurate nu- 
merical results for flU/N which are in good agreement with the MC results. 
DeWitt 's analysis of Ng's results yields the form 

flUH~c/N = --0.9005P + 0.2688P ls2 + 0.0720 In F + 0.0538 (3) 

The other integral equation of  interest is the mean spherical approximation 
(MSA) to be discussed in this paper. The numerical solutions of Gillan (6) for 
1 ~< P ~< 130 have been analyzed by DeWitt (~ with the empirical result 

flUMsA/N = --0.9005P + 0.2997F 1~2 + 0.0007 (4) 

The main characteristics of (3) and (4) are the separation of U into a fluid 
static energy and a thermal energy portion which is dominated by a pl/2 
rather than a p~/~ dependence as in (1). 

Although the form (1) is simple and appealing and confirmed in part by 
the numerical analysis of  the HNC and MSA equations, there exists no firm 
theoretical basis for (1). We gain some insight by showing in Section 2.1 that 
an analytic expression for U in the MSA can be found in the limit P >> 1. 
Our result is 

p1/6 
fiUMsA/N = -Tgo-P + {X/3 F 1/2 + + O(F-'/6) 

15X/~ 21/3 (5) 

A comparison of (4) and (5) reveals that the form of the static energy and the 
leading behavior of the thermal energy obtained by DeWitt's numerical 
analysis over a finite range of P is similar to the asymptotic solution for 
I' >> 1. The MSA result for the static energy per particle, i.e., UMsA/N = 
--9e2/lOa, is identical to the prediction of the ion-sphere model. (7~ Although 
the coefficients of the P 1t2 term in (4) and (5) differ slightly (x/3/6 = 0.2887), 
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it is remarkable that DeWitt's numerical analysis yield the exact exponent 1/2 
of the leading term in the MSA result for the thermal energy. 

Another approach to the thermodynamic properties of the OCP is that of 
Stroud and Ashcroft (8~ (SA), who use a variational method based on a hard- 
sphere reference system. The reference system is assumed to be well approxi- 
mated by Percus-Yevick theory and the hard-sphere diameter is obtained as a 
function of F by minimizing the free energy. It is shown in the Appendix that 
U carl be determined analytically in the limit P >> 1 with the result that 

2 (_~)z/s + 8_.(F_),ls + O(r-,/s) (6) 
fiUsA/N = - 9 6 F  + 5- 1 5 \ 6 /  

Inspection of (6) shows that the method of  Stroud and Ashcroft yields 
the same static energy term as the ion-sphere model, and that the predicted 
behavior of the dominant term in the thermal energy bears more resemblance 
to the MC result than the HNC and MSA predictions. 

In Section 2.2 we extend DeWitt's least squares analysis of the MSA to 
higher values of F in order to determine the sensitivity of DeWitt's analysis. 
We discuss in Section 3 some properties of the pair correlation function and 
show that the usual methods for determining g(r) from its Laplace transform 
fail. A brief discussion is given in Section 4. 

2. T H E R M O D Y N A M I C  PROPERTIES 
SPHERICAL A P P R O X I M A T I O N  

2.1. 

that 

IN THE MEAN 

Asymptot ic  Solution for the Internal Energy 

The mean spherical approximation (MSA) is based on the assumptions 

g(r) = O, r < a (7) 

c(r) = - ~ v ( r ) ,  r > ~ (8 )  

where the direct correlation function c(r) is related to g(r) - 1 by the 
Ornstein-Zernike equation. Palmer and Weeks r have obtained an exact 
solution of the MSA for the case of  charged hard spheres of radius ~ in a 
uniform neutralizing background. In this case the only approximation is (8). 
For a system such as the OCP it might be expected that an interpretation of a 
as a "distance of closest approach" might be useful, since for F >> 1 the inter- 
particle potential V(r) prevents particles from approaching each other too 
closely. Gillan ~6~ has shown that the static properties of the OCP can be 
determined from the solution of Palmer and Weeks for hard spheres from the 
requirement that 

g ( r = a  + ) = 0  (9) 
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The above condit ion is reasonable  for  a system with a cont inuous interparticle 
potential.  Gillan solved (9) numerical ly to determine a for  1 ~< F ~< 130. The 
exact result o f  Pa lmer  and Weeks for  the internal interaction energy U in 
terms o f  P and a was then used to obtain numerical  results for  U. 

We show in the following that  (9) can be solved exactly in the limit 
F >> 1 to obtain a and hence U as a function of  F within the mean  spherical 
approximat ion .  The exact solution of  (7) and (8) with V(r) = e~/r and 
arbi t rary  a is conveniently given in terms of  the dimensionless parameters  
A = a/a, '/ = ~rrna 3 = ( t /2)  3, and ~ = (3A2F) 1/2. Some of  the relevant results 
are (9) 

and 

f lU/N = -(1/3A3){(1 + '/ - ~q2)h:2 + ~A} 

A = (1 + 2'/)(1 - J )  

J = [1 + 2(1 - '/)3K/(1 + 2'/)~'] ~/2 

(10) 

(11) 

(12) 

g(r = a +) = (1 - '/)-2[(1 + '//2) - A2/24'/1 (13) 

The substi tut ion of  (13) into (9) leads to the following equat ion for  A as a 
funct ion of  F:  

A 2 = 24'/(1 + ,//2) (14) 

The results o f  a numerical  solution of  (14) are shown in Fig. 1 ; it is seen that  
a/a is a monotonic ,  slowly increasing funct ion of  P. In  order  to solve (14) for  
F >> 1, we note f rom (11) and (12) that  '/ ~< 1 for  a solution to exist, and A 
increases wi thout  bound  unless ( 1 -  '/)3u ~ ( 1 -  '/)3F1/2 approaches  a 
constant.  Since the r ight-hand side of  (14) is finite, we conclude that  for  
F >> 1, E - 1 - ' / ~  F -1/6 and the limiting value o f a  = 2a. We write 

e -= e z P  -1/6  -t- E2I ~-2/6  -}- ea I  ~-3/6 -}- e4 1~'4/6 + "" (15) 

expand bo th  sides of  (14) in powers  of  the small pa ramete r  ~ and then in 
powers  of  F -  1~6, and collect terms of  the same order  in F -  116. The  results are 

= ( 1 8 / ~ / 3 )  1~3, , 2  = -~(18/v% =/3, ~3 = ~ ,/Y, ~4 = -2"/3/27 (16) E1 

The asymptot ic  dependence of  U on F is found by combining  (10), (14), and  
(15) and expanding in ~: 

flU P ( 5 3 5E4 14 5 350 6'~ 
N ]-6 9 + ~ E  + ~  +~-~E + 7 - ~ j  

4) + - -  1 + ] - ~  + e 3 + . . .  (17) 
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Fig. 1. The I" dependence of the parameter ~ = ~/a as determined by Eq. (14). 

Inspection of (17) shows that it is necessary to retain terms of O(F -z/3) in e in 
order to obtain f iU/N to O(1). The substitution of (15) and (16) in (17) yields 
the asymptotic dependence on P for U as given in (5). Note that the form (5) 
for U is an asymptotic expansion in F -  1/6, and that the first correction to the 
dominant static energy term is F ~12 rather than r 5j6. 

2,2. Least Squares Analysis 

Since the asymptotic form of f lU/N derived in Section 2.1 differs some- 
what in form from that found by DeWitt's empirical analysis in the range 
1 ~< F ~< 130, it is interesting to attempt to determine the sensitivity of a 
least squares analysis to the range of F. We assume the functional form 
f iU/N = -�89 + bP s + c with s = 1/2. The results of our analysis for the 
coefficients a, b, and e are shown in Table I. It is seen that the coefficients a 
and b are insensitive to the range of  F, but that c changes sign. This variation 
implies that the F dependence of the thermal energy portion of  U might be 
more complicated than that assumed by DeWitt. However, it was not possible 
to determine the nature of the corrections by a least squares analysis. 
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Table I. Sensitivity of a Least Squares Analysis of the Mean Spherical 
Approximation to the Energy ~ U / N  = - -  �89 + b I ' � 8 9  + c to the Range of r 

a/2 b c rm~ Fm~x A] ~ Variance x 10 ~ 

0.9003 0.2977 0.00069 1 130 1 3.40 
0.9000 0.2906 0.0433 130 500 10 9.09 
0.8999 0.2886 0.0740 5 • 102 l03 10 1.01 
0.9000 0.2920 -0.0168 103 4 • 103 50 8.08 
0.8996 0.2420 1.7916 4 • 103 10 ~ 50 8.19 

3. C O R R E L A T I O N  F U N C T I O N S  

The direct correlat ion function c(r) is given explicitly in the M S A  and 
takes the form (9~ 

F 2 ( P/3U~ 3 
= A + 

= - r / x  

The  value o f  c(x = O) = A is given by 

c(O)= (5+~2)  1 
60-q ( I  - .q)2 

P 
+l - - f fox  5, x < A  

x > A  (18) 

( I  + -q)[6.q(l + ,q12)] */2 
6(1 - 7) 

(19) 

In  the above  x = r/a and/3 U/N is given by (10). Qualitative agreement  of  the 
M S A  values of  c(x) with the Monte  Carlo values is shown in Table I I  for  
P = 20 and P = 100. A direct check on the the rmodynamic  consistency o f  
the M S A  can be obta ined by using (1~ 

c(O) = 2 / 3 U / N -  /3(~P/~n)r (20) 

which follows f rom the fact that  f d3r [c(r) + flV(r)]g(r) = 0 [see (7) and 

(8)]. In (20) P is the pressure and fi(OP/~n)r is the inverse isothermal  compressi-  
bility. We see f rom (19) that  the leading behavior  of  c(0) = - 1.2]?. However ,  
if we determine c(0) f rom (20) and use (5) and the exact re la t ion /3P/n  = 
1 +/3U/3N, we find the leading behavior  c(0) = - 1.4F. This the rmodynamic  
inconsistency o f  the M S A  is a general feature of  approx imate  integral 
equat ions for  g(r). 

The static pair  correlat ion funct ion g(x) does not  appear  explicitly in the 
solution of  Pa lmer  and Weeks,  but  it is given in terms o f  the Laplace trans-  
fo rm G(s). We write 

g(x) = 2"~'x do-~  ds G(s)e a*x (21) 
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Table 2 Comparison of the Mean Spherical Approximation Values for the 
Direct Correlation Function c(r) with the Monte Carlo Values 

I '  = 20, ,~ = 1.10 1 ~ = 100, )t = 1.32 

x c(x) Mo c(x)~sA c(x)~o c(x),~sA 

0.00 -25.9012 -25,5812 --132.485 - 122.747 
0.008 -25.8996 --25.5806 - 132.456 -- 122.743 
0.25 -25.3428 -25.0137 - 128.837 - 119.910 
0.50 -23.8092 --23.5377 -- 119.511 - 112.518 
0.75 -21.6401 -21.4800 -- 107.130 - 102,084 
0.999 -- 19.1089 -- 19.1481 --93.5919 --89.8140 
1.249 --16.1448 --16.0128 --80.2928 --80.0640 
1.499 -- 13.2787 - 13.3422 --67,2661 --66.7111 
1.749 --11.2396 - 11.4351 --56.4657 -57.1755 
1.999 --9.8794 - 10.0050 -49.5032 -50.0250 
2.249 -8.8207 --8.8928 -44.1782 -44.4642 
2.499 --7.9686 -8 .0032 -39.8882 -40.0160 
2.748 -7.2627 --7,2780 -36.3465 --36,3901 
2.998 -6.6699 -6.6711 --33.3612 -33.3555 

whe re  

a n d  

1sL(s) 
G(s) = 12~7[L(s) + S(s)e a~] (22) 

L(s) = 12~/(P~s + K) (23) 

S( s )  = ( I s )  4 + R(1s)  3 + �89 2 + 12~(K - P)~s  - 12~K (24) 

In  the  l imi t  I? >> 1, R ~ F 1/6, x ~ pl/2, and  P = ~/2. T h e  p a t h  o f  i n t e g r a t i o n  

in (21) is to  be  t a k e n  to  the  r igh t  o f  al l  po les  o f  the  in tegrand .  T h e  poles  o f  

G(s) can  be  d e t e r m i n e d  n u m e r i c a l l y  fo r  a r b i t r a r y  P a n d  are  f o u n d  to  be  in the  

l e f t -ha l f  p l ane  4 a n d  to  shif t  t o w a r d  the  i m a g i n a r y  axis w i th  inc reas ing  F. Th i s  

b e h a v i o r  is cons i s t en t  w i th  the  fac t  t ha t  G(s) is the  Lap l ace  t r a n s f o r m  o f  a 

w e l l - b e h a v e d  f u n c t i o n  a n d  t h a t  t he  sys tem is d i sordered .  I n  the  l imi t  F >> 1 

the  po les  lie on  the  i m a g i n a r y  s axis a n d  are  g iven  by  the  s i m u l t a n e o u s  

so lu t ions  to  the  t r a n s c e n d e n t a l  e q u a t i o n s  

1 - s s i n 2 s - c o s 2 s = 0  (25a) 

s + s c o s 2 s -  s i n 2 s =  0 (25b) 

4 In addition to the double pole at s = 0. 
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The above equations can be combined to give 2 s -  s 2 sin 2s = sin 2s if 
spurious solutions are omitted. The first few poles are + is = 4.4934, 7.7252, 
10.9041, 14.0662, 17.2208, 23.5194. For large, integer m the poles are given 
by +_iSm = (2m + 1)~r -- (4/rr)(2m + 1) -~. The determination & t h e  poles of 
G(s)  allows us to explicitly close the contour in (21) in the left-hand plane and 
obtain an explicit representation of g(x) .  However, the residues are all order 
unity, so that this representation does not appear to be useful. 

The usual method m~ for determining g(x )  is to write (21) as 

)t a neS(X - ~n) 
g (x )  = 2&ri71 x ds s (26) 

If  S ( s )  has no zeros in the right-hand plane, then the contour can be closed 
in the right-hand plane and explicit expressions can be obtained for g(x )  in 
the ranges An ~< x ~< ),(n + 1). However, for the MSA in the limit P >> 1, the 
roots of  S ( s )  can be simply determined to be sl = 1.0, s2 = -6 .079P  z/6, 
sa,4 = ( -3 .728  _+ il.083)I "*/6. Since sl lies on the right-hand plane, this 
procedure is not applicable. 

4. D I S C U S S I O N  

We have seen that the asymptotic solution of the mean spherical approxi- 
mation for the internal energy is consistent with that found by DeWitt's least 
square analysis of the numerical solution. This agreement gives some addi- 
tional support to the form (1) adopted by DeWitt from his analysis of  the 
Monte Carlo data. DeWitt m has also made a preliminary analysis of the 
potential energy for repulsive potentials of the form V ( r ) =  E(a/r) m for 
m = 4, 6, 9, and 12. The Monte Carlo data (lm are fitted to the form ~ U / N  = 
�89 + bI TM + c for I' >> 1, with P = fle(a/a) m. There is an insufficient number 
of data points for m = 4, 6, and 9 for us to be confident of the results. The 
result for m = 12 suggests that f l U / N  = 0.00493P + 0.516I "1/~ - 0.49, 
200 ~< P ~< 538; the coefficient ~/2 is close to the fcc Madelung constant 
0.00483 of  the 1/r ~2 potential. It would be of much interest to extend the 
Monte Carlo calculations for 1/r m potentials to additional values of m and I'. 
However, DeWitt's results suggest that there is a universal form of the leading 
behavior of  the thermal energy, i.e., P ~/~ for all strongly coupled inverse- 
power fluids. 

The origin of  the conjectured universal behavior presents a challenging 
problem to theory. From this point of view the long-range nature of the 1/r 
potential is an irrelevant complication to a theoretical analysis. The analysis 
of  the mean spherical approximation presented here shows that some 
simplifications occur in the strong coupling limit, and suggests that it might 
be possible to obtain explicit asymptotic solutions of the mean spherical 
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approximation or hypernetted chain equations for the internal energy of 
inverse-power fluids. However, it is doubtful that much insight into the origin 
of  the F 1/~ dependence of the thermal energy can be gained from the investiga- 
tion of integral equations for the pair distribution function g(r). As an 
example of the difficulty of  such an investigation, the bridge graphs which are 
neglected in the hypernetted chain equation contribute to g(r) only for 
r/a <~ 2.5. Yet the contribution of the bridge graphs to U must be of the form 
f lU/N = -0.2688263P 1t2 + 0.8165F 1/~, so that the p1~2 dependence in (3) is 
exactly canceled. A more fruitful approach might be one that attempts to 
isolate the physical mechanisms important for strong coupling and in 
particular mechanisms important near the fluid-solid transition. 

APPENDIX 

We consider briefly two other approaches to the OCP that lead to explicit 
results for U in the limit I" >> 1. The variational approach of Stroud and 
Ashcroft based on the hard-sphere reference fluid is based on the inequality 

7(4 - 37) 372/a 1 - 7/5 + 72/10 p 
~f ~< (A1) 

(1 ---~--~ 1 + 2 7  

wheref i s  the deviation of the free energy per particle from its ideal gas value. 
The parameter ~7 = ~rrne 8, and cr is the hard-sphere diameter. A lowest upper 
bound f o r f i s  obtained by minimizing the right-hand side of (A1) with respect 
to -q. The result for 7 is expressed as 

p = 271/a 2 - 7 (1 + 2~7) = 
2 + 7 -(1 - - ~  

(A2) 

Note that at P = 155, 7 = 0.52 according to (A2), in comparison to ~7 = 0.31 
according to its MSA value. Equation (A2) can be solved for E = 1 - 7 
using the same method as in Section 2.1, with the result that 

62/5 
= 6~/5F- ~/~ _ 

15 
p-2/5 - (46/225)  63~5 p-a/5 + ... (A3) 

To obtain U we use the relation U = f + Ts and recognize that the first term 
in (A1) is the negative of - Ts. The asymptotic result (6) for U then follows. 

The basis of the approach of Ref. t 3 is a linear-closure procedure for the 
BBGKY hierarchy. The procedure leads to a second-order differential 
equation for g(r) which can be solved analytically in the limit P >> 1. The 
result for U is 

~U/N  = -0 .6771F + 3/14 + ... (A4) 
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I t  is r emarkab le  tha t  this simple a p p r o x i m a t i o n  gives the leading te rm 
p r o p o r t i o n a l  to P, bu t  the numer ica l  coefficient and  the thermal  energy 
p o r t i o n  are in d i sagreement  with (1). 
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